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Abstract
We show that the Laplace–Runge–Lenz vector (LRLV) generates the Infeld–
Hull radial factorization and the pair of isospectral Hamiltonians for the non-
relativistic Kepler–Coulomb quantum problem. To do this we only use the
LRLV and arguments of general soundness. Finally, the well known restrictions
on the orbital angular momentum and the principal quantum numbers are
rederived from the corresponding ladder operators.

PACS numbers: 0365, 0230T, 1130P

1. Introduction

Since the early days of quantum mechanics, the Schrödinger equation has been solved for
a large number of potentials employing a variety of approaches. The solutions of certain
potentials have been given using the constants of motion of the problem [1, 2] and using
the factorization method [3], for example. Although the methods of solution usually focus
on different aspects of solvable potentials, they are not independent from each other. In
fact, supersymmetric quantum mechanics (SUSYQM) [4] is related [5] to the factorization
method and some algebraic approaches [6]. Also, for some systems, SUSY charges have been
investigated in connection with the constants of motion of the problem [7, 8].

It is well known that the non-relativistic Kepler–Coulomb quantum problem (NRKCQP)
can be solved with its constants of motion [1] and by factorization techniques [3]. The Laplace–
Runge–Lenz vector (LRLV), A, is the one responsible for the accidental degeneracy of the
hydrogen atom’s energy levels with respect to the orbital angular momentum quantum number,
� [9]. The radial ladder operators for the reduced wavefunction fn�(r), acting on �, obtained
by the Infeld–Hull (IH) factorization method have been related to the operator A [7, 10, 11].
The first work in this direction was that of Coish [10]. He used Pauli operators and found that
the vectors L and A obey the so(4) algebra [12]. Moreover Biedenharn and Louck in [11]
derived some results of [10]. To do this they considered the electron as a Pauli particle. They
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also employed Dirac radial decomposition as well as the properties of the Dirac operator
K = −(σ · L + 1), and those of the operator σ · A. In [7] Tangerman and Tjon identified the
SUSY charges by using the spin degrees of freedom of the electron. It can be concluded from
the previous works that the spin operators and their properties seems to be essential to obtain
their results.

In this paper we show the relation between A and the supersymmetric approach of
the NRKCQP from a different point of view. We show that the IH factorization and the
supersymmetry of the problem is only generated by the LRLV and arguments of general
soundness. By doing this we apply the spherical components of A to any state wavefunction
of the full function space spanned by the solutions of the Schrödinger equation. An idea similar
to ours has been simply suggested by Grosse [13].

In the next section, for the NRKCQP we apply the spherical components A± and A0

of A to any state ψn�m = Y�m(θ, ϕ)fn�(r)/r , without the restriction m = � of Grosse [13]
and Granados [14]. This procedure allows us to obtain the radial ladder operators for fn�(r),
acting on �, and therefore it shows that they are restrained in A. We arrive at this conclusion
by imposing our results to be consistent with those derived from the Wigner–Eckart theorem.
We stress the fact that no spin operators are needed in our formalism. Moreover, we also note
that such deduction does not use either the Dirac radial decomposition or the particular state
ψn�� of the system.

In section 3, by means of a simple argument, we show how the ladder operators obtained
in section 2 must coincide with those of the IH factorization method, to be consistent with
the radial Schrödinger equation. Also in this section, we show that the form of the known
superpotentials of the problem is connected with one of the necessary conditions, in order to
apply the IH factorization method. In section 4 we find the constraints for the quantum numbers
n and � so that the corresponding ladder operators are well defined. Finally, in section 5, we
give some concluding remarks.

2. The operators A±, A0 and ladder operators for fn�(r), acting on �

It is well known [1] that the Hermitian LRLV

A = 1√
2µE

{
1

2
(L × p − p × L) + µe2 r

r

}
(1)

represents the constant of motion associated with the dynamical symmetry of the non-
relativistic quantum problem with potential −e/r . Here p (L) is the linear (angular) momentum
operator for a spinless particle of mass µ. Equation (1) is equivalent to

Ai = 1√
2µE

{
−xip2 + pir · p + µe2 xi

r

}
i = 1, 2, 3. (2)

This implies that

A± = 1√
2µE

{
(x ± iy)

(
−p2 +

µe2

r

)
+ (px ± ipy)r · p

}
(3)

and

A0 ≡ Az = 1√
2µE

{
z

(
−p2 +

µe2

r

)
+ pzr · p

}
. (4)

We want to apply the spherical componentsA± andA0 to any element of the standard basis,
ψn�m, of the wavefunction space of a spinless particle ξr. Any central-potential wavefunction
is necessarily [9] of the form

ψn�m = Y�m(θ, φ)Rn�(r). (5)
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This state is an eigenfunction of the constants of motion H , L2 and Lz. Y�m(θ, φ) =
1√
2π
P�m(θ)eimφ is a spherical harmonic, and Rn�(r) satisfies the radial Schrödinger equation[

h̄2

µ
H�

]
rRn�(r) = En�rRn�(r) (6)

where

2H� ≡ − d2

dr2
+
�(� + 1)

r2
− 2

a0r
≡ − d2

dr2
+ V (r, �). (7)

V (r, �) denotes the effective potential of the problem, and a0 ≡ h̄2/µe2.
By expressing the operators (x ± iy),p2 and r · p in spherical coordinates, we find

(x ± iy) = r sin θe±iφ (8)

p2 = −h̄2 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ h̄2 �(� + 1)

r2
(9)

r · p = −ih̄r
∂

∂r
. (10)

On the other hand, we have that

px ± ipy = −ih̄

(
∂

∂x
± i

∂

∂y

)
. (11)

By substituting equations (8)–(11) into (3), we obtain

A± = 1√
2µE

{
sin θe±iφ

[
h̄2 1

r

∂

∂r

(
r2 ∂

∂r

)
− h̄2�(� + 1)

r
+ µe2

]
− h̄2

(
∂

∂x
± i

∂

∂y

)
r
∂

∂r

}
.

(12)

Substituting equations (9) and (10) into (4) leads us to

A0 = 1√
2µE

{
cos θ

[
h̄2 1

r

∂

∂r

(
r2 ∂

∂r

)
− h̄2�(� + 1)

r
+ µe2

]
− h̄2

(
∂

∂z

)
r
∂

∂r

}
. (13)

We define fn�(r), g
−
�+1 and g+

� as

fn�(r) ≡ rRn�(r) (14)

g−
�+1 ≡ − d

dr
+ u(r, � + 1) (15)

and

g+
� ≡ d

dr
+ u(r, �) (16)

with

u(r, � + 1) ≡ � + 1

r
− 1

(� + 1)a0
. (17)

Equation (14) defines what we have called the reduced radial wavefunction.
By applying the operators A± and A0 to ψn�m, and using recursion relations for spherical

harmonics [15], we obtain

A±ψn�m = h̄2

√
2µE

{
(� + 1)α±Y�+1,m±1

(
− 1

r
g−
�+1

)
fn�(r) + �β±Y�−1,m±1

(
− 1

r
g+
�

)
fn�(r)

}
(18)
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and

A0ψn�m = − h̄2

√
2µE

{
(� + 1)γ Y�+1,m

(
−1

r
g−
�+1

)
fn�(r) + �εY�−1,m

(
1

r
g+
�

)
fn�(r)

}
(19)

where

α± = ±
√
(�±m + 1)(�±m + 2)

(2� + 1)(2� + 3)
β± = ∓

√
(�∓m)(�∓m− 1)

(2� + 1)(2�− 1)

γ =
√
(� + m + 1)(�−m + 1)

(2� + 3)(2� + 1)
and ε =

√
(� + m)(�−m)

(2� + 1)(2�− 1)
.

From equations (18) and (19) and the following argument we can recognize the operators
g−
�+1 and g+

� as ladder operators for fn�(r), acting on �.
It is a general result [17] that if G is an element of the symmetry group of any problem,

then

GH = HG.

By using this fact and applying the elementG to the stationary Schrödinger equation, we obtain

H(Gψnα) = En(Gψnα).

Thus, Gψnα is a solution of the Shrödinger equation corresponding to the eigenvalue En.
Therefore, this function can be expanded in terms of the eigenfunctions ψnα as follows:

Gψnα =
∑
β

ψnβAβα. (20)

We note that equations (18) and (19)—as well as (23) and (24)—are particular cases of
this relation, being combinations of eigenstates of H�+1 and H�−1, pertaining to the subspaces
ξ(�+1,m) and ξ(�−1,m), respectively. In factA±ψn�m andA0ψn�m are eigenfunctions ofH�,
which implies that En� = En�+1 = En�−1. This shows the connection between the dynamical
symmetry of the problem and its accidental degeneracy. Then the spherical components of
A connect all the states with a given energy. Hence the radial operators g−

�+1 and g+
� in

equations (18) and (19) do not change the index n of the function fn�(r).
Notice that in equation (18) ((19)) the spherical harmonics Y�+1,m±1 (Y�+1,m) and Y�−1,m±1

(Y�−1,m) are contained in the first and second terms of A±ψn�m (A0ψn�m) respectively. From
the first term of equation (18) or (19), together with (20), we immediately conclude that the
operator g−

�+1 acting over fn�(r) gives as result only a change in the subindex �, from � to �+ 1.
This is because the second subindex in fn�(r) must coincide with the first one of the spherical
harmonic Y�+1,m±1 or Y�+1,m. Formally this means that

g−
�+1fn�(r) α fn�+1(r). (21)

Similarly from equation (20) and the second term of equation (18) or (19) it follows that

g+
� fn�(r) α fn�−1(r). (22)

The relationships (21) and (22) are confirmed by comparing (18) and (19) with the well
known expressions [11]

A±ψn�m = ∓α(±α±)ψn,�+1,m±1 ± β(∓β±)ψn,�−1,m±1 (23)

and

A0ψn�m = αγ ψn,�+1,m + βεψn,�−1,m (24)
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which follow from the application of the Wigner–Eckart theorem, with

α =
√
(n + � + 1)(n− �− 1) and β =

√
(n + �)(n− �).

We note from equation (23) (equation (24)) that A±ψn�m (A0ψn�m) is a combination of
ψn�+1m±1 and ψn�−1m±1 (ψn�+1m and ψn�−1m), which is not true if we only consider the radial
part of the states.

We can say about the recurrence relations (21) and (22) that:

(a) These relations cannot be a consequence of the Wigner–Eckart theorem, but of the explicit
application of A± and A0 to any element ψn�m. We also note that the condition m = �

that was imposed in [13] is superfluous.
(b) The first (second) of them transforms the radial part of any state in the subspace ξ(�,m) of

H� into the radial part of the corresponding state in the subspace ξ(�+ 1,m) (ξ(�− 1,m))
of H�+1 (H�−1). This suggests the origin of the supersymmetric approach to the radial
problem. However, according to equations (15) and (16), the operators g−

0 and g+
0 are not

defined. Because of this if � = −1 we have that g−
(−1)+1fn(−1) ≡ g−

0 fn(−1) cannot be
fn0 in spite of equation (21). Analogously, if � = 0 then g+

0fn0 cannot be equal to fn(−1)

in spite of equation (22). This implies that there is no ladder operator that transforms
fn0(r) into any state with � < 0 (if it existed). Conversely, there is no ladder operator that
transforms a possible state with � < 0 into to the state fn0(r). Therefore the structure of
the operators in equations (15) and (16) enables us to conclude that

�min = 0 (25)

which is a standard result.
Incidentally, we note that equations (18) and (19) are still valid when � = 0 because their
term that contains g+

0 is proportional to �.
(c) We can combine them to obtain the relations

g+
�+1g

−
�+1 fn�(r) α fn�(r) g−

� g
+
� fn�(r) α fn�(r)

or equivalently

(g+
�+1g

−
�+1 − k1) fn�(r) = 0 (26)

(g−
� g

+
� − k2)fn�(r) = 0 (27)

where k1 and k2 are constants that we will determine in the following section. The operators
in equations (26) and (27) are related to the radial Hamiltonian of the problem, H�, by the
equalities

g+
�+1g

−
�+1 = 2(H� + η�) (28)

g−
� g

+
� = 2(H� + η�−1) (29)

with

2η� =
(

1

(� + 1)a0

)2

. (30)

As a final comment, we note that according to equations (18) and (19) the operators A±
and A0 can be written as(
A±
A0

)
= h̄2

√
2µE

1√
2� + 1

[
� + 1√
2� + 3

(
A†

±
−A†

0

) (
−1

r
g−
�+1

)
+

�√
2�− 1

(
A∓
A0

) (
−1

r
g+
�

)]

where the operators A†
±, A± and A0 defined in [16] are related to the operators of the o3,2

algebra associated with spherical harmonics.
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3. Relation between g operators, the IH ladder operators and SUSY charges

Starting from the fact that fn�(r) satisfies the equation (6)

(2H� − λ)fn�(r) = 0 (31)

with λ = 2µE/h̄2 (for E < 0).
Next, the substitution of equations (28) and (29) into (26) and (27) leads us to

[2(H� + η�)− k1]fn�(r) = 0 (32)

[2(H� + η�−1)− k2]fn�(r) = 0. (33)

Since equations (31)–(33) must be equivalent, we find that

k1 = λ + 2η� (34)

k2 = λ + 2η�−1. (35)

Therefore equations (32) and (33) take the form

g+
�+1g

−
�+1 fn�(r) = [λ + 2η�] fn�(r) (36)

g−
� g

+
� fn�(r) = [λ + 2η�−1] fn�(r) (37)

which are correct if relations (21) and (22) satisfy the equalities

g−
�+1fn�(r) =

√
λ + 2η�fn�+1(r) (38)

g+
� fn�(r) =

√
λ + 2η�−1fn�−1(r). (39)

The operators defined in equations (15) and (16) that satisfy (38) and (39) are identical to
those obtained by means of the IH-factorization method. In fact, they reproduce the results of
the class I type F IH factorization for the Kepler–Coulomb (KC) problem [3]. In the previous
section we showed that these operators can be deduced by using an independent and more
fundamental procedure than that used by other authors [7, 10, 11].

On the other hand [18], a Hamiltonian of the type

H = −1

2

d2

dr2
+ V (r) (40)

would admit only one of the forms

H(0) = Q+Q− or H(1) = Q−Q+ (41)

where

Q± = 1

2

(
∓ d

dr
+

dχ

dr

)
(42)

and χ = χ(r), only if F = dχ/dr ≡ χ ′ satisfies the Riccati equation

V (r) =
{
F 2 − F ′ if H admits the form H(0)

F 2 + F ′ if H admits the form H(1).
(43)

H(0) and H(1) are the two isospectral Hamiltonians, except in the ground state. They can be
viewed as the bosonic and the fermionic components of the matrix SUSY Hamiltonian

H =
(
H(1) 0

0 H(0)

)
= 1

2 [(p2
r + F 2)I + F ′σ3]

in which I is the unit matrix and σ3 is the Pauli spin matrix [4]. The quantity F(r) is generally
referred to as the superpotential in SUSYQM literature [5].
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Since the energy of the hydrogen atom ground state is not zero, its Hamiltonian H� does
not admit any of the forms H(0) or H(1) [19]. However, we observe that the equations

F 2 − F ′ = V (r, �) + 2η� ≡ 2V (0) (44)

F 2 + F ′ = V (r, � + 1) + 2η� ≡ 2V (1) (45)

are satisfied simultaneously by

F ≡ −u(r, � + 1) = 1

(� + 1)a0
− � + 1

r
. (46)

In fact, the superpotential F satisfies simultaneously equations (44) and (45).
Because η� is not a function of r and it appears in V (0) and V (1) with the same sign, the

nonlinear differential equations (44) and (45) imply the relation

u(r, � + 1) = 1

2

V ′(r, �) + V ′(r, � + 1)

V (r, �)− V (r, � + 1)
(47)

where V ′ = dV/dr .
We recognize equation (47) as one of the necessary conditions for the IH factorization [3]

of the Schrödinger equation, (31). Such factorization is confirmed by the existence of
equations (38) and (39), whose effect in equations (28) and (29) is to eliminate all reference
to η�, allowing us to recover the radial Schrödinger equation of the hydrogen atom.

As we have already said in section 2, equations (28) and (29) naturally lead to the well
known pair of isospectral Hamiltonians of the problem [20]. In fact, from equation (28)

(H� + η�) =
(

1√
2
g+
�+1

) (
1√
2
g−
�+1

)
≡ Q+

�Q
−
� . (48)

From equations (7) and (44) it follows that

Q+
�Q

−
� = −1

2

d2

dr2
+ V (0) ≡ H(0) (49)

which is a Hamiltonian of the form given by equation (40). Analogously, by making the change
� → � + 1 in equation (29) and using (7) and (45), the associated Hamiltonian is

H(1) ≡ Q−
� Q

+
� = −1

2

d2

dr2
+ V (1). (50)

From equations (49) and (50) we can see that the effective potentials for two consecutive
values of � determine the supersymmetric partner potentials V (0) and V (1), from which the
hydrogen atom spectrum can be obtained. For this purpose the restriction n � �+1 is imposed
a priori by other authors [20, 21]. We will see in the next section how this restriction can be
deduced with the help of the ladder operators for fn�(r) acting on n.

The basic idea to obtain such a spectrum is to use the fact that the application of H(0) to
the state with maximum admissible value of �, consistent with n, satisfies that

H(0)fn �max ≡ Q+
� (Q

−
� fn �max) = 0. (51)

This relation implies the existence of a state of the hydrogen atom spectrum that serves as an
eigenstate with a vanishing eigenvalue for the Hamiltonian H(0). The remaining part of the
KC spectrum is obtained by means of the successive application of Q+

�−1 [20].
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4. Restrictions to the quantum numbers n and �

Equation (31) can be rewritten as{
−r2 d2

dr2
+

[
−λr2 − 2

a0(−λ)1/2 (−λ)
1/2r + �(� + 1)

]}
fn�(r) = 0 (52)

that suggests the form

(On + �(� + 1))fn�(r) = 0 (53)

where On is defined as

On = −r2 d2

dr2
+

[
σ 2r2

4
− nσr

]
= −r2 d2

dr2
+ U(r, n) (54)

with

n ≡ a−1
0 (−λ)−1/2 = 2µe2

σh̄2

and

σ 2 ≡ −8µE

h̄2 = −4λ (E < 0).

We denote the ladder operators for the reduced radial wavefunction fn�(r), acting on n, by ϕ+
n

and ϕ−
n such that

ϕ+
nfn�(r) α fn+1�(r) (55)

ϕ−
n fn�(r) α fn−1�(r). (56)

These operators have been derived following a method more general than the IH-factorization
method [22], and are given by

ϕ+
n = r

na0
− n− r

d

dr
(57)

ϕ−
n = r

na0
− n + r

d

dr
. (58)

The operators ϕ±
n are formally defined by

n 
= 0 (59)

which is consistent with the non-existence of the state f0�(r) in the hydrogen atom spectrum.
Furthermore, from equations (15), (17) and (51) the state fn�max(r) satisfies

g−
�max+1fn�max =

(
− 1

(�max + 1)a0
+
�max + 1

r
− d

dr

)
fn�max(r) = 0 (60)

which, according to equation (58), is formally equivalent to the expression

−1

r
(ϕ−

�max+1)fn �max(r) = 0. (61)

Evidently equation (61) is a particular case of (56). From this we conclude that the subindex
of ϕ−

�max+1 must be equal to the first subindex of fn�max . This means that n = �max + 1, or

�max = n− 1. (62)

Equations (25), (59) and (62) lead us to

0 � � � n− 1 and n > 0

which, as we saw above in this section, can be obtained by imposing on both fn�(r) radial
ladder operators (those that act on � and those that act on n) the condition to be well defined,
along with the existence of the so-called ground state fn�max [20] that satisfies equations (60)
and (61).
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5. Conclusion

We have found for the KC problem that there exists a straightforward connection between the
constants of motion associated with the dynamical symmetry, the radial factorization of the
problem and its supersymmetric treatment. This explicit connection has been directly found
when the spherical components of the LRLV act on any arbitrary element in the standard
basis of the state space ξr. Therefore, our procedure turns out to be more fundamental than
those used in other papers, since it allows us to reproduce independently the results of the IH-
factorization method, as well as those of the supersymmetric approach that admits the radial
part of the problem.
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